Uploaded image for project: 'Data Management'
  1. Data Management
  2. DM-29695

Examine brighter-fatter correction impact on variance planes

    XMLWordPrintable

    Details

    • Type: Improvement
    • Status: In Progress
    • Resolution: Unresolved
    • Fix Version/s: None
    • Component/s: ip_isr
    • Labels:
      None

      Description

      A couple months ago it was noticed that the variance planes in calexps were 10-20% lower than empirical for HSC, and 10% higher than empirical for DECam. Brighter fatter is the most likely source, so the suggestion is to run ScaleVarianceTask on the images right before BF and right after OR on calexps with isr.BF turned on or off to confirm this is the cause of the differences.

      The prior analysis can be found in https://github.com/lsst-dm/diffimTests/tree/master/tickets/DM-22396_ScaleVariance_debug

        Attachments

        1. HSC_EXPAPPROXIMATION_PTC_det73.pdf
          39 kB
        2. HSC_PTC_det73.pdf
          37 kB
        3. image-2021-05-01-13-54-07-685.png
          image-2021-05-01-13-54-07-685.png
          199 kB
        4. image-2021-05-01-13-54-18-630.png
          image-2021-05-01-13-54-18-630.png
          156 kB
        5. image-2021-05-01-13-54-29-623.png
          image-2021-05-01-13-54-29-623.png
          167 kB
        6. PTC_detS29.pdf
          64 kB
        7. screenshot-1.png
          screenshot-1.png
          134 kB
        8. screenshot-2.png
          screenshot-2.png
          276 kB
        9. screenshot-3.png
          screenshot-3.png
          622 kB
        10. screenshot-4.png
          screenshot-4.png
          75 kB

          Issue Links

            Activity

            Hide
            plazas Andrés Alejandro Plazas Malagón added a comment -

            Tunning, some parameters of the task to include more points:

            pipetask run -j 9 -d "detector IN (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30) AND instrument='DECam' AND exposure IN (153088,153089,153090,153091,153092,153095,153096,153097,153098,153099,153100,153101,153102,153103,153104,153105,153106,153107,153108,153109,153110,153111,153112,153115,153116,153117,153118,153119,153120,153121,153122,153123,153124,153125,153126,153127,153128,153129,153130,153131,153132,153133,153134,153135,153136,153030,153035,153039,153040,153079,153080,153081,153082,153085,153086,153087)" -b /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2 -i DECam/raw/all,DECam/calib -p /home/plazas/lsst_devel/LSST/cp_pipe/pipelines/measurePhotonTransferCurve.yaml -c ptcSolve:ptcFitType=POLYNOMIAL -c isr:doLinearize=False -c isr:doCrosstalk=False -c isr:doDefect=False -c isr:doBias=False -c isr:doDark=False -c isr:doFlat=False -c ptcSolve:initialNonLinearityExclusionThresholdPositive=0.1 -c ptcSolve:initialNonLinearityExclusionThresholdNegative=0.1 -c ptcSolve:minVarPivotSearch=30000 -c ptcSolve:minMeanRatioTest=1000 -c ptcSolve:sigmaCutPtcOutliers=10 -o ptc_2021MAY02.1 --register-dataset-types
            

            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S15_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.7691257061912116, 'B': 4.379643086796402}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S12_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.8853582259221846, 'B': 4.036745233708877}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S2_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.708636707802179, 'B': 4.232237727675842}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S1_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.110615662456239, 'B': 4.231633914126678}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S22_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.8712298424856035, 'B': 3.879834161178448}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S24_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.9117313074935613, 'B': 4.323051613806082}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S18_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.8222934245058218, 'B': 4.255891634025443}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S3_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.968435572369203, 'B': 4.844259856149896}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S9_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.948265923301593, 'B': 4.691855851771984}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S6_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.078603484276802, 'B': 4.017349300843371}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S16_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.7860595049020467, 'B': 4.288615818398926}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S27_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.091113792966569, 'B': 3.8424935670053855}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S23_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.329057241294821, 'B': 4.351307410574284}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S20_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.9835806393154787, 'B': 3.954467513965731}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S28_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.504289676810856, 'B': 5.073777576201708}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S8_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.5023768222396345, 'B': 4.78126148258539}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S26_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 7.861917457134321, 'B': 2.5233502681504154}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S13_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.7634589508573493, 'B': 4.050310801663693}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S10_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.189219804733647, 'B': 4.267447661493404}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S29_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.70280385658764, 'B': 3.883326985692564}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S17_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.7289241076969395, 'B': 4.16530190782093}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S14_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.110853521280339, 'B': 3.9771693150586387}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S5_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.4097033880917476, 'B': 4.28367590268997}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S25_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.458610935902888, 'B': 4.680367428420633}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S21_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.9305194052354597, 'B': 4.210282897540109}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S19_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.020262405997158, 'B': 3.927274153011615}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S31_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.605842308779766, 'B': 3.9892267421284355}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S4_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 3.8015382611784374, 'B': 4.867303448274548}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S30_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.909222097138484, 'B': 4.4677547172303065}
             
            /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S11_ptc_2021MAY02_1_20210502T013357Z.fits
            Gain: 
            {'A': 4.339995904816039, 'B': 4.320460204120186}
            

            S29 PTC_detS29.pdf

            plotPhotonTransferCurve.py /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY01.6/20210502T012402Z/ptc/ptc_DECam_S29_ptc_2021MAY01_6_20210502T012402Z.fits --detNum=1 --outDir=/project/plazas/DM-29695-missing-variance-BFE
            

            Show
            plazas Andrés Alejandro Plazas Malagón added a comment - Tunning, some parameters of the task to include more points: pipetask run -j 9 -d "detector IN (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30) AND instrument='DECam' AND exposure IN (153088,153089,153090,153091,153092,153095,153096,153097,153098,153099,153100,153101,153102,153103,153104,153105,153106,153107,153108,153109,153110,153111,153112,153115,153116,153117,153118,153119,153120,153121,153122,153123,153124,153125,153126,153127,153128,153129,153130,153131,153132,153133,153134,153135,153136,153030,153035,153039,153040,153079,153080,153081,153082,153085,153086,153087)" -b /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2 -i DECam/raw/all,DECam/calib -p /home/plazas/lsst_devel/LSST/cp_pipe/pipelines/measurePhotonTransferCurve.yaml -c ptcSolve:ptcFitType=POLYNOMIAL -c isr:doLinearize=False -c isr:doCrosstalk=False -c isr:doDefect=False -c isr:doBias=False -c isr:doDark=False -c isr:doFlat=False -c ptcSolve:initialNonLinearityExclusionThresholdPositive=0.1 -c ptcSolve:initialNonLinearityExclusionThresholdNegative=0.1 -c ptcSolve:minVarPivotSearch=30000 -c ptcSolve:minMeanRatioTest=1000 -c ptcSolve:sigmaCutPtcOutliers=10 -o ptc_2021MAY02.1 --register-dataset-types /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S15_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.7691257061912116, 'B': 4.379643086796402} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S12_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.8853582259221846, 'B': 4.036745233708877} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S2_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.708636707802179, 'B': 4.232237727675842} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S1_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.110615662456239, 'B': 4.231633914126678} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S22_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.8712298424856035, 'B': 3.879834161178448} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S24_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.9117313074935613, 'B': 4.323051613806082} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S18_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.8222934245058218, 'B': 4.255891634025443} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S3_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.968435572369203, 'B': 4.844259856149896} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S9_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.948265923301593, 'B': 4.691855851771984} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S6_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.078603484276802, 'B': 4.017349300843371} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S16_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.7860595049020467, 'B': 4.288615818398926} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S27_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.091113792966569, 'B': 3.8424935670053855} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S23_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.329057241294821, 'B': 4.351307410574284} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S20_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.9835806393154787, 'B': 3.954467513965731} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S28_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.504289676810856, 'B': 5.073777576201708} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S8_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.5023768222396345, 'B': 4.78126148258539} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S26_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 7.861917457134321, 'B': 2.5233502681504154} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S13_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.7634589508573493, 'B': 4.050310801663693} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S10_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.189219804733647, 'B': 4.267447661493404} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S29_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.70280385658764, 'B': 3.883326985692564} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S17_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.7289241076969395, 'B': 4.16530190782093} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S14_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.110853521280339, 'B': 3.9771693150586387} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S5_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.4097033880917476, 'B': 4.28367590268997} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S25_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.458610935902888, 'B': 4.680367428420633} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S21_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.9305194052354597, 'B': 4.210282897540109} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S19_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.020262405997158, 'B': 3.927274153011615} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S31_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.605842308779766, 'B': 3.9892267421284355} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S4_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 3.8015382611784374, 'B': 4.867303448274548} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S30_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.909222097138484, 'B': 4.4677547172303065} /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY02.1/20210502T013357Z/ptc/ptc_DECam_S11_ptc_2021MAY02_1_20210502T013357Z.fits Gain: {'A': 4.339995904816039, 'B': 4.320460204120186} S29 PTC_detS29.pdf plotPhotonTransferCurve.py /project/plazas/DM-29695-missing-variance-BFE/DECamGen3Test2/ptc_2021MAY01.6/20210502T012402Z/ptc/ptc_DECam_S29_ptc_2021MAY01_6_20210502T012402Z.fits --detNum=1 --outDir=/project/plazas/DM-29695-missing-variance-BFE
            Hide
            plazas Andrés Alejandro Plazas Malagón added a comment -

            HSC: Linearity data for detector 73:

            (at tiger2-sumire)

             ls /projects/HSC/HSC-Public/Linearity/2018-04-23/*[24680]00.fits
            

            Create gen3 repo (in /project/plazas/DM-29695-missing-variance-BFE/):

             butler create HSCGen3Test2
             butler register-instrument ./HSCGen3Test2 lsst.obs.subaru.HyperSuprimeCam
             butler write-curated-calibrations ./HSCGen3Test2 lsst.obs.subaru.HyperSuprimeCam
             butler ingest-raws ./HSCGen3Test2 data/HSC/flats2/*.fits --transfer link
            

            Polynomial (deg 3) fit:

            Note: expId1 and inputDims (for HSC) differ, so expId1 = (expId1 - detNum)/200 shoudl be set in cpPtcExtract

            expId1:  29383273
            np.array(inputDims):  [146916 146920 146924 146928 146932 146936 146940 146952 146956 146960
             146964 146968 146972 146976 147000 147002 147004 147010 147014 147018
             147022 147026 147030 147034 147038 147042 147046 147050 147054 147058
             147062 147064]
            

            pipetask run -j 9 -d "detector IN (73) AND instrument='HSC' AND exposure IN (146916,146920,146924,146928,146932,146936,146940,146952,146956,146960,146964,146968,146972,146976,147000,147002,147004,147010,147014,147018,147022,147026,147030,147034,147038,147042,147046,147050,147054,147058,147062,147064)" -b /project/plazas/DM-29695-missing-variance-BFE/HSCGen3Test2 -i HSC/raw/all,HSC/calib -p /home/plazas/lsst_devel/LSST/cp_pipe/pipelines/measurePhotonTransferCurve.yaml -c ptcSolve:ptcFitType=POLYNOMIAL -c isr:doLinearize=False -c isr:doCrosstalk=False -c isr:doDefect=False -c isr:doBias=False -c isr:doDark=False -c isr:doFlat=False -c ptcSolve:initialNonLinearityExclusionThresholdPositive=0.1 -c ptcSolve:initialNonLinearityExclusionThresholdNegative=0.1 -c ptcSolve:minVarPivotSearch=30000 -c ptcSolve:minMeanRatioTest=1000 -c ptcSolve:sigmaCutPtcOutliers=10 -o ptc_2021MAY04.PRUEBA.2 --register-dataset-types
            

            plotPhotonTransferCurve.py /project/plazas/DM-29695-missing-variance-BFE/HSCGen3Test2/ptc_2021MAY04.PRUEBA.2/20210506T194613Z/ptc/ptc_HSC_0_00_ptc_2021MAY04_PRUEBA_2_20210506T194613Z.fits --detNum=73 --outDir=/project/plazas/DM-29695-missing-variance-BFE/plots/HSC
            

            Gains:

            from lsst.ip.isr import PhotonTransferCurveDataset
            filename="/project/plazas/DM-29695-missing-variance-BFE/HSCGen3Test2/ptc_2021MAY04.PRUEBA.2/20210506T194613Z/ptc/ptc_HSC_0_00_ptc_2021MAY04_PRUEBA_2_20210506T194613Z.fits"
            fromFits = PhotonTransferCurveDataset.readFits(filename)
             
            In [5]: fromFits.gain
            Out[5]: 
            {'0': 3.8659529635915617,
             '1': 3.6346835961670223,
             '2': 3.547171434932095,
             '3': 3.54736331982458}
             
            In [6]: fromFits.noise
            Out[6]: 
            {'0': 5.567376066742054,
             '1': 5.129006317833421,
             '2': 4.981057943709491,
             '3': 4.957983067826489}
            

            (from: HSC_PTC_det73.pdf )

            Exponential approximation model:

            pipetask run -j 9 -d "detector IN (73) AND instrument='HSC' AND exposure IN (146916,146920,146924,146928,146932,146936,146940,146952,146956,146960,146964,146968,146972,146976,147000,147002,147004,147010,147014,147018,147022,147026,147030,147034,147038,147042,147046,147050,147054,147058,147062,147064)" -b /project/plazas/DM-29695-missing-variance-BFE/HSCGen3Test2 -i HSC/raw/all,HSC/calib -p /home/plazas/lsst_devel/LSST/cp_pipe/pipelines/measurePhotonTransferCurve.yaml -c ptcSolve:ptcFitType=EXPAPPROXIMATION -c isr:doLinearize=False -c isr:doCrosstalk=False -c isr:doDefect=False -c isr:doBias=False -c isr:doDark=False -c isr:doFlat=False -c ptcSolve:initialNonLinearityExclusionThresholdPositive=0.1 -c ptcSolve:initialNonLinearityExclusionThresholdNegative=0.1 -c ptcSolve:minVarPivotSearch=30000 -c ptcSolve:minMeanRatioTest=1000 -c ptcSolve:sigmaCutPtcOutliers=10 -o ptc_2021MAY06.EXPAPPROXIMATION --register-dataset-types
            

            In [1]: from lsst.ip.isr import PhotonTransferCurveDataset
             
            In [2]: filename="/project/plazas/DM-29695-missing-variance-BFE/HSCGen3Test2/ptc_2021MAY06.EXPAPPROXIMATION/20210506T205523Z/ptc/ptc_HSC_0_00_ptc_2021MAY06_EXPAPPRO
               ...: XIMATION_20210506T205523Z.fits"
             
            In [3]: fromFits = PhotonTransferCurveDataset.readFits(filename)
             
            In [4]: fromFits.gain
            Out[4]: 
            {'0': 3.7942044770779497,
             '1': 3.644914978067487,
             '2': 3.55430931333964,
             '3': 3.5425723722236246}
             
            In [5]: fromFits.noise
            Out[5]: 
            {'0': 5.144589314594767,
             '1': 5.193140499919786,
             '2': 5.028407308359781,
             '3': 4.9258378112961445}
            

            plotPhotonTransferCurve.py "/project/plazas/DM-29695-missing-variance-BFE/HSCGen3Test2/ptc_2021MAY06.EXPAPPROXIMATION/20210506T205523Z/ptc/ptc_HSC_0_00_ptc_2021MAY06_EXPAPPRO --detNum=73 --outDir=/project/plazas/DM-29695-missing-variance-BFE/plots/HSC
            

            (from: HSC_EXPAPPROXIMATION_PTC_det73.pdf )

            This shows that the gain might be a bit overestimated in HSC and might help understand what ScaleVarianceTask reports (for DECam, it's still unclear). These are the gains in detector 73 (thanks to Chris, using ftool ~/tmp/trash/obs_subaru/hsc/camera/0_00.fits -T -A -c gain)

            ##gain
            4.2097
            4.054
            3.9717
            3.9878
            

            Show
            plazas Andrés Alejandro Plazas Malagón added a comment - HSC: Linearity data for detector 73: (at tiger2-sumire ) ls /projects/HSC/HSC-Public/Linearity/2018-04-23/*[24680]00.fits Create gen3 repo (in /project/plazas/ DM-29695 -missing-variance-BFE/ ): butler create HSCGen3Test2 butler register-instrument ./HSCGen3Test2 lsst.obs.subaru.HyperSuprimeCam butler write-curated-calibrations ./HSCGen3Test2 lsst.obs.subaru.HyperSuprimeCam butler ingest-raws ./HSCGen3Test2 data/HSC/flats2/*.fits --transfer link Polynomial (deg 3) fit: Note: expId1 and inputDims (for HSC) differ, so expId1 = (expId1 - detNum)/200 shoudl be set in cpPtcExtract expId1: 29383273 np.array(inputDims): [146916 146920 146924 146928 146932 146936 146940 146952 146956 146960 146964 146968 146972 146976 147000 147002 147004 147010 147014 147018 147022 147026 147030 147034 147038 147042 147046 147050 147054 147058 147062 147064] pipetask run -j 9 -d "detector IN (73) AND instrument='HSC' AND exposure IN (146916,146920,146924,146928,146932,146936,146940,146952,146956,146960,146964,146968,146972,146976,147000,147002,147004,147010,147014,147018,147022,147026,147030,147034,147038,147042,147046,147050,147054,147058,147062,147064)" -b /project/plazas/DM-29695-missing-variance-BFE/HSCGen3Test2 -i HSC/raw/all,HSC/calib -p /home/plazas/lsst_devel/LSST/cp_pipe/pipelines/measurePhotonTransferCurve.yaml -c ptcSolve:ptcFitType=POLYNOMIAL -c isr:doLinearize=False -c isr:doCrosstalk=False -c isr:doDefect=False -c isr:doBias=False -c isr:doDark=False -c isr:doFlat=False -c ptcSolve:initialNonLinearityExclusionThresholdPositive=0.1 -c ptcSolve:initialNonLinearityExclusionThresholdNegative=0.1 -c ptcSolve:minVarPivotSearch=30000 -c ptcSolve:minMeanRatioTest=1000 -c ptcSolve:sigmaCutPtcOutliers=10 -o ptc_2021MAY04.PRUEBA.2 --register-dataset-types plotPhotonTransferCurve.py /project/plazas/DM-29695-missing-variance-BFE/HSCGen3Test2/ptc_2021MAY04.PRUEBA.2/20210506T194613Z/ptc/ptc_HSC_0_00_ptc_2021MAY04_PRUEBA_2_20210506T194613Z.fits --detNum=73 --outDir=/project/plazas/DM-29695-missing-variance-BFE/plots/HSC Gains: from lsst.ip.isr import PhotonTransferCurveDataset filename = "/project/plazas/DM-29695-missing-variance-BFE/HSCGen3Test2/ptc_2021MAY04.PRUEBA.2/20210506T194613Z/ptc/ptc_HSC_0_00_ptc_2021MAY04_PRUEBA_2_20210506T194613Z.fits" fromFits = PhotonTransferCurveDataset.readFits(filename)   In [ 5 ]: fromFits.gain Out[ 5 ]: { '0' : 3.8659529635915617 , '1' : 3.6346835961670223 , '2' : 3.547171434932095 , '3' : 3.54736331982458 }   In [ 6 ]: fromFits.noise Out[ 6 ]: { '0' : 5.567376066742054 , '1' : 5.129006317833421 , '2' : 4.981057943709491 , '3' : 4.957983067826489 } (from: HSC_PTC_det73.pdf ) Exponential approximation model: pipetask run -j 9 -d "detector IN (73) AND instrument='HSC' AND exposure IN (146916,146920,146924,146928,146932,146936,146940,146952,146956,146960,146964,146968,146972,146976,147000,147002,147004,147010,147014,147018,147022,147026,147030,147034,147038,147042,147046,147050,147054,147058,147062,147064)" -b /project/plazas/DM-29695-missing-variance-BFE/HSCGen3Test2 -i HSC/raw/all,HSC/calib -p /home/plazas/lsst_devel/LSST/cp_pipe/pipelines/measurePhotonTransferCurve.yaml -c ptcSolve:ptcFitType=EXPAPPROXIMATION -c isr:doLinearize=False -c isr:doCrosstalk=False -c isr:doDefect=False -c isr:doBias=False -c isr:doDark=False -c isr:doFlat=False -c ptcSolve:initialNonLinearityExclusionThresholdPositive=0.1 -c ptcSolve:initialNonLinearityExclusionThresholdNegative=0.1 -c ptcSolve:minVarPivotSearch=30000 -c ptcSolve:minMeanRatioTest=1000 -c ptcSolve:sigmaCutPtcOutliers=10 -o ptc_2021MAY06.EXPAPPROXIMATION --register-dataset-types In [ 1 ]: from lsst.ip.isr import PhotonTransferCurveDataset   In [ 2 ]: filename = " / project / plazas / DM - 29695 - missing - variance - BFE / HSCGen3Test2 / ptc_2021MAY06.EXPAPPROXIMATION / 20210506T205523Z / ptc / ptc_HSC_0_00_ptc_2021MAY06_EXPAPPRO ...: XIMATION_20210506T205523Z.fits"   In [ 3 ]: fromFits = PhotonTransferCurveDataset.readFits(filename)   In [ 4 ]: fromFits.gain Out[ 4 ]: { '0' : 3.7942044770779497 , '1' : 3.644914978067487 , '2' : 3.55430931333964 , '3' : 3.5425723722236246 }   In [ 5 ]: fromFits.noise Out[ 5 ]: { '0' : 5.144589314594767 , '1' : 5.193140499919786 , '2' : 5.028407308359781 , '3' : 4.9258378112961445 } plotPhotonTransferCurve.py "/project/plazas/DM-29695-missing-variance-BFE/HSCGen3Test2/ptc_2021MAY06.EXPAPPROXIMATION/20210506T205523Z/ptc/ptc_HSC_0_00_ptc_2021MAY06_EXPAPPRO --detNum=73 --outDir=/project/plazas/DM-29695-missing-variance-BFE/plots/HSC (from: HSC_EXPAPPROXIMATION_PTC_det73.pdf ) This shows that the gain might be a bit overestimated in HSC and might help understand what ScaleVarianceTask reports (for DECam, it's still unclear). These are the gains in detector 73 (thanks to Chris, using ftool ~/tmp/trash/obs_subaru/hsc/camera/0_00.fits -T -A -c gain ) ##gain 4.2097 4.054 3.9717 3.9878
            Hide
            plazas Andrés Alejandro Plazas Malagón added a comment -

            Aside: the work on making the PTC task function with DEcam data and HSC data that was developed in this ticket was moved to another ticket, DM-30130, to separate things.

            Show
            plazas Andrés Alejandro Plazas Malagón added a comment - Aside: the work on making the PTC task function with DEcam data and HSC data that was developed in this ticket was moved to another ticket, DM-30130 , to separate things.
            Hide
            plazas Andrés Alejandro Plazas Malagón added a comment -

            Chris checked the math used in Bernstein+17 ("Instrumental response model and detrending for the Dark Energy Camera") and confirmed that their formula for the variance and what's in our ISR code coincide. Therefore, we seem to agree on the methods.

            We discussed with Chris checking the values after the background subtraction that is performed by a context manager in the scale variance factor task before calculating the pixel and image scale factors. This distribution should be centered around zero with a standard deviation close to 1 if we understand the noise distribution. Chris calculated this distribution for DEcam images, and we found that it is indeed centered around zero but with a sigma of ~0.82, which means that the variance plane will be higher by a factor of ~ 0.82^2 = 0.679, which is consistent with the scale factor that we have been finding for DECam images.

            Show
            plazas Andrés Alejandro Plazas Malagón added a comment - Chris checked the math used in Bernstein+17 ("Instrumental response model and detrending for the Dark Energy Camera") and confirmed that their formula for the variance and what's in our ISR code coincide. Therefore, we seem to agree on the methods. We discussed with Chris checking the values after the background subtraction that is performed by a context manager in the scale variance factor task before calculating the pixel and image scale factors. This distribution should be centered around zero with a standard deviation close to 1 if we understand the noise distribution. Chris calculated this distribution for DEcam images, and we found that it is indeed centered around zero but with a sigma of ~0.82, which means that the variance plane will be higher by a factor of ~ 0.82^2 = 0.679, which is consistent with the scale factor that we have been finding for DECam images.
            Hide
            plazas Andrés Alejandro Plazas Malagón added a comment -

            Another check, suggested by Chris, is to look at the scale factor reported by the task after making the variance plane, before making the flat, and after making the flat, and do this for the whole focal plane for a range of DECam exposures. If all the values at each step are the same for a detector, then it's not a feature dependent on the sky, sources, etc.

            Command:

            nohup pipetask run -j 9 -d "detector IN (1..62) AND exposure IN (288976,289016,289409,289493,289614,289820,289871) AND instrument='DECam'" -b /project/mrawls/hits2014-3/butler.yaml -i DECam/raw/all,DECam/calib,DECam/calib/DM-26971 -p /home/plazas/lsst_devel/LSST/obs_decam/pipelines/DRP.yaml#isr -c isr:doBrighterFatter=False -c isr:doLinearize=False -c isr:connections.bias='bias' -c isr:biasDataProductName='bias' -c isr:connections.flat='flat' -c isr:flatDataProductName='flat' -o u/andres/DM-29695/postISR.decam.2021MAY13.6 --register-dataset-types 2>&1 | tee log.DM-29695.2021MAY13.6
            

            Full output in /home/plazas/lsst_devel/LSST/ip_isr/log.DM-29695.2021MAY13.6

            For one detector, the scale factors seem to be consistent across different exposures:

            isr INFO: DM-29695: before var map scaleFactors 57.96983820109894, 58.452972001601424 28987161 N30 61 A
            isr INFO: DM-29695: after var map scaleFactors 3.9956834833591035, 6.610897797054294 28987161 N30 61 A
            isr INFO: DM-29695: before var map scaleFactors 3.9956834833591035, 6.610897797054294 28987161 N30 61 B
            isr INFO: DM-29695: after var map scaleFactors 0.7007764489930125, 0.7000842876415234 28987161 N30 61 B
            isr INFO: DM-29695: before flat scaleFactors 0.7007764489930125, 0.7000842876415234 28987161 N30 61
            isr INFO: DM-29695: after flat scaleFactors 0.681931749483376, 0.6841051717491675 28987161 N30 61)
            

            Picking one exposure, 289614, the results seem to also be consistent across different detectors. For example,

            isr INFO: DM-29695: before var map scaleFactors 50.29182536205966, 50.7197337712512 28961411 S23 11 A
            isr INFO: DM-29695: after var map scaleFactors 3.339859758058494, 0.7119860497296152 28961411 S23 11 A
            isr INFO: DM-29695: before var map scaleFactors 3.339859758058494, 0.7119860497296152 28961411 S23 11 B
            isr INFO: DM-29695: after var map scaleFactors 0.6629060554064795, 0.6629273259263699 28961411 S23 11 B
            isr INFO: DM-29695: before flat scaleFactors 0.6626422372744426, 0.6626858302814864 28961411 S23 11
            isr INFO: DM-29695: after flat scaleFactors 0.6357515313246155, 0.6352227458010834 28961411 S23 11
            

            isr INFO: DM-29695: before var map scaleFactors 54.73647988872145, 55.15204801863784 28961452 N21 52 A
            isr INFO: DM-29695: after var map scaleFactors 3.4847922766913997, 0.734293353779192 28961452 N21 52 A
            isr INFO: DM-29695: before var map scaleFactors 3.4847922766913997, 0.734293353779192 28961452 N21 52 B
            isr INFO: DM-29695: after var map scaleFactors 0.6934252927812252, 0.6933824287273015 28961452 N21 52 B
            isr INFO: DM-29695: before flat scaleFactors 0.6931716272864122, 0.6931485679424054 28961452 N21 52
            isr INFO: DM-29695: after flat scaleFactors 0.6718722785740711, 0.6717430952072597 28961452 N21 52
            isr INFO: DM-29695: scaleFactors 0.6718722785740711, 0.6717430952072597 28961452 N21 52
            

            isr INFO: DM-29695: before var map scaleFactors 43.68462012015279, 45.55426321422043 28961431 S7 31 A
            isr INFO: DM-29695: after var map scaleFactors 43.68462012015279, 45.55426321422043 28961431 S7 31 A
            isr INFO: DM-29695: before var map scaleFactors 43.68462012015279, 45.55426321422043 28961431 S7 31 B
            isr INFO: DM-29695: after var map scaleFactors 0.4203686394123188, 0.4204171251468196 28961431 S7 31 B
            isr INFO: DM-29695: before flat scaleFactors 0.4203600888247675, 0.4204082965977526 28961431 S7 31
            isr INFO: DM-29695: after flat scaleFactors 0.40519949367064567, 0.4051799370697797 28961431 S7 31
            

            Show
            plazas Andrés Alejandro Plazas Malagón added a comment - Another check, suggested by Chris, is to look at the scale factor reported by the task after making the variance plane, before making the flat, and after making the flat, and do this for the whole focal plane for a range of DECam exposures. If all the values at each step are the same for a detector, then it's not a feature dependent on the sky, sources, etc. Command: nohup pipetask run -j 9 -d "detector IN (1..62) AND exposure IN (288976,289016,289409,289493,289614,289820,289871) AND instrument='DECam'" -b /project/mrawls/hits2014-3/butler.yaml -i DECam/raw/all,DECam/calib,DECam/calib/DM-26971 -p /home/plazas/lsst_devel/LSST/obs_decam/pipelines/DRP.yaml#isr -c isr:doBrighterFatter=False -c isr:doLinearize=False -c isr:connections.bias='bias' -c isr:biasDataProductName='bias' -c isr:connections.flat='flat' -c isr:flatDataProductName='flat' -o u/andres/DM-29695/postISR.decam.2021MAY13.6 --register-dataset-types 2>&1 | tee log.DM-29695.2021MAY13.6 Full output in /home/plazas/lsst_devel/LSST/ip_isr/log. DM-29695 .2021MAY13.6 For one detector, the scale factors seem to be consistent across different exposures: isr INFO: DM-29695: before var map scaleFactors 57.96983820109894, 58.452972001601424 28987161 N30 61 A isr INFO: DM-29695: after var map scaleFactors 3.9956834833591035, 6.610897797054294 28987161 N30 61 A isr INFO: DM-29695: before var map scaleFactors 3.9956834833591035, 6.610897797054294 28987161 N30 61 B isr INFO: DM-29695: after var map scaleFactors 0.7007764489930125, 0.7000842876415234 28987161 N30 61 B isr INFO: DM-29695: before flat scaleFactors 0.7007764489930125, 0.7000842876415234 28987161 N30 61 isr INFO: DM-29695: after flat scaleFactors 0.681931749483376, 0.6841051717491675 28987161 N30 61) Picking one exposure, 289614, the results seem to also be consistent across different detectors. For example, isr INFO: DM-29695: before var map scaleFactors 50.29182536205966, 50.7197337712512 28961411 S23 11 A isr INFO: DM-29695: after var map scaleFactors 3.339859758058494, 0.7119860497296152 28961411 S23 11 A isr INFO: DM-29695: before var map scaleFactors 3.339859758058494, 0.7119860497296152 28961411 S23 11 B isr INFO: DM-29695: after var map scaleFactors 0.6629060554064795, 0.6629273259263699 28961411 S23 11 B isr INFO: DM-29695: before flat scaleFactors 0.6626422372744426, 0.6626858302814864 28961411 S23 11 isr INFO: DM-29695: after flat scaleFactors 0.6357515313246155, 0.6352227458010834 28961411 S23 11 isr INFO: DM-29695: before var map scaleFactors 54.73647988872145, 55.15204801863784 28961452 N21 52 A isr INFO: DM-29695: after var map scaleFactors 3.4847922766913997, 0.734293353779192 28961452 N21 52 A isr INFO: DM-29695: before var map scaleFactors 3.4847922766913997, 0.734293353779192 28961452 N21 52 B isr INFO: DM-29695: after var map scaleFactors 0.6934252927812252, 0.6933824287273015 28961452 N21 52 B isr INFO: DM-29695: before flat scaleFactors 0.6931716272864122, 0.6931485679424054 28961452 N21 52 isr INFO: DM-29695: after flat scaleFactors 0.6718722785740711, 0.6717430952072597 28961452 N21 52 isr INFO: DM-29695: scaleFactors 0.6718722785740711, 0.6717430952072597 28961452 N21 52 isr INFO: DM-29695: before var map scaleFactors 43.68462012015279, 45.55426321422043 28961431 S7 31 A isr INFO: DM-29695: after var map scaleFactors 43.68462012015279, 45.55426321422043 28961431 S7 31 A isr INFO: DM-29695: before var map scaleFactors 43.68462012015279, 45.55426321422043 28961431 S7 31 B isr INFO: DM-29695: after var map scaleFactors 0.4203686394123188, 0.4204171251468196 28961431 S7 31 B isr INFO: DM-29695: before flat scaleFactors 0.4203600888247675, 0.4204082965977526 28961431 S7 31 isr INFO: DM-29695: after flat scaleFactors 0.40519949367064567, 0.4051799370697797 28961431 S7 31

              People

              Assignee:
              plazas Andrés Alejandro Plazas Malagón
              Reporter:
              czw Christopher Waters
              Watchers:
              Andrés Alejandro Plazas Malagón, Arun Kannawadi, Christopher Waters, Yusra AlSayyad
              Votes:
              0 Vote for this issue
              Watchers:
              4 Start watching this issue

                Dates

                Created:
                Updated:

                  Jenkins

                  No builds found.